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T W O - P A R A M E T E R  FAMILY 

OF S U C C E S S I V E  ( M ,  N ) - A P P R O X I M A T I O N S  

OF T H E  E Q U A T I O N S  OF AN E L A S T I C  L A Y E R  

OF V A R I A B L E  T H I C K N E S S  

A. E. Alekseev UDC 539.3 

One method for deriving the two-dimensional equations of the theory of plates and shells is the method 
of expansion in terms of thickness using Legendre's polynomials (for example, [1]). Ivanov [2] proposed a 
method based on the use of several approximations of the same unknown functions as truncated series in 
terms of Legendre's polynomials. Developing this technique, Alekseev [3] derived a one-parameter family 
of successive approximations of the equations of deformation of a layer of variable thickness in an arbitrary 
curvilinear coordinate system. For a layer of constant thickness in an orthogonal curvilinear coordinate system 
successive approximations that depend on two parameters and are called (M, N)-approximations are reported 
by Pelekh et al. [4]. Below, we propose a method, which is different from that proposed in [4], for reducing 
the three-dimensional equations of the theory of elasticity to a two-parameter sequence of two-dimensional 
problems of an elastic layer of variable thickness in an arbitrary curvilinear coordinate system. This method 
develops the results of [2, 3]. 

1. Def in i t ion  of  t h e  G e o m e t r y  of t he  Layer. We denote by V the region of three-dimensional 
space R 3 occupied by a shell. We define the position of the faces S + and S -  by specifying the radius vectors 
R + and R -  as functions of the same Gaussian coordinates ~ :  

R + = It+ (~), R- = R- (~a), {~a} E S~ C R 2. 

Hereafter the Greek superscripts and subscripts take values 1 and 2, and the Latin superscripts and subscripts, 
1, 2, and 3. 

The functions R + and I t -  map a plane region S~ with a boundary L~ in space R 2 onto the faces S + 
and S- ,  respectively. The position of each internal point of the shell V is defined by a vector function of the 
curvihnear coordinates ~k: 

R(~ k) = r0 ( ~ )  + ~ J h r ( ~ ) ,  {~k} e Y~ C n 3, (1.1) 

where 

V ={ klCe S cR 2, d e [--1, 11} , r0 ---- 0.5 (R+(~ a) A- I t -  (~a)), Ar -- 0.5(It+(~ a) - I t -  (~a)). (1.2) 

In this case, the vector function R maps Vs onto V, and the vector function r0 maps the plane region 
S~ onto the surface So in three-dimensional space, which is called below the middle surface. 

Let h denote half the layer thickness along ~3. From (1.2), we obtain h = (Ar .  Ar) ~ Ar = hn (n is 
a unit vector along ~3). 

Let E be the side surface of the shell, and L, the line of intersection of E and So. Then, following 
(1.2), E is a ruled surface formed by a family of straight lines passing through points of the boundary L in 
the direction of the vector n. We fix a point with coordinates { ~ }  in the region S~. Then, following (1.1), 
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the vector function R associates this point with a segment of a straight line in three-dimensional space that 
ends on the faces. Moreover, if this point belongs to L, the entire segment belongs to the side surface Z. 

Thus, the geometry of a shell of variable thickness is completely specified by the vector functions R + 
and R - .  In this case, the vector n is not necessarily normal to the surface So, and the side surface r. and the 
middle surface So may not intersect at a right angle. 

2. Local  Bases  of  t h e  C o o r d i n a t e  S y s t e m  of  t h e  Layer .  Following (1.1), one can take a set of 
three numbers {~k} as the coordinates of each point of the layer V; {~"} are the Gaussian coordinates of the 
middle surface So, and ~3 E [ -1 ,  1] is the coordinate along n. Such a curvilinear coordinate system is called 
the coordinate system of the layer. 

Differentiating both sides of Eq. (1.1) with respect to the variables ~k, we obtain the vector functions 

3 .  = R , .  = R , .  = 0~" = r0,. + Ar, .~ 3, 33 = R,3 = Ar  = hn, (2.1) 

which form a covariant local basis for the coordinate system of the layer. 
Let us introduce the following notation: 3 ~ = r0,. = 3 .  (@, 0), a ~ = 33 (~"), and 3 ~ -- ai (~., 0). 
The triples of the vectors 3 ~ and 3 ~ form local bases on the middle surface of the layer. The local bases 

at an arbitrary point of the layer are determined by parallel translation from the corresponding point of the 
middle surface. 

For each point of the layer we determine a triple of vectors ai, 

a .  = n • 0 ~ • n ) ,  = n ,  (2 .2)  

and consider it further as the main local (covariant) basis of the layer. Following the well-known formula from 
vector algebra, from (2.2) we find a~ = 3 ~ - n .  (a ~  n), i.e., the vector a~ is the projection of 3 ~ onto the 
plane orthogonal to the unit vector n. The corresponding biorthogonal (contravariant) vector is found from 
the conditions a i .  a j = 6 i (6 j is the Kronecker symbol) and is of the form a" = 30,, a a = n. It follows from 
(2.2) that the vector n is orthogonal to the base vectors a" and a , .  

Thus, using the above method, we can define three types of local bases for the curvilinear coordinate 
system of the layer (~i, 3 ~ and ai). Every vector from one basis can be represented as a linear combination 
of vectors of another basis. Denote 

0 0 0 
go  = 3i �9 3 i ,  gii  = 3i " 3 i ,  a 0 = ai �9 a i, (2.3) 

where gii are the components of the metric tensor of the coordinate system ~i. It follows from (2.1) and (2.3) 
that g3a = h 2, and from (2.2) we have 333 = 1 and 33, = 0. 

Using the notation g ,  = g , a / h  and ~ = - ( a s , , .  a#), we write formulas (2.1) as 

Accordingly, for components of the metric tensor gii we have 

7 ~, h 2. (2.4) gqf~ = mamBa7) ,  + g ,g~ ,  g ,3  = h g , ,  g33 = 

From (2.4) we obtain formulas that relate the determinants g, gO, and a of the matrices [[giiH, IIg~ and 
Ilaij[l: g = h2m2a and gO = h2a, (rn = m l r n  2 1  2 _ m l r n  2 2  1 is the determinant of the matrix ]lm,#l]). 

3. E q u a t i o n s  of  t h e  L i n e a r  T h e o r y  of  E la s t i c i t y  in an A r b i t r a r y  C u r v i l i n e a r  C o o r d i n a t e  
Sys t em.  Let us consider an arbitrary curvilinear coordinate system ~i. The equilibrium equations for a 
continuum are written in vector form [1] as 

t l i +  f = O, ~i = d t i ,  f = d f ,  t i = aiJ31; (3.1) 

3i • {;i = O, J = 3 1 "  (32 X 3 3 )  , (3.2) 

where J is the Jacobian of transformation of the coordinates; cr ii are the components of the stress tensor; f is 
the vector of volume forces. Equation (3.2) is the condition of symmetry of the stress tensor. 
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The components of the strain tensor r are related to the displacement vector u by the linear relations 

2~ii = (3i .  u.j) + (~j.  u,i). (3.3) 

The generalized Hooke's law has the form 
(r ij = CijtS~ks (3.4) 

(C ijkJ are the contravar.iant components of the fourth-rank tensor that defines the properties of the elastic 
medium). 

It is convenient to write relations (3.4) in vector form: 

~i = j ~ i j  . u, j .  (3.5) 

Here ~i j  is the operator given by the formula ~i j  = c i j k ,  (at * 3s), where the asterisk denotes tensor 
multiplication. 

For simplicity, we restrict further discussion to the case of boundary conditions where the boundary S 
of the deformed body is composed of two parts: S= (displacements are specified) 

u[s= = u , ;  (3.6) 

and S~, (stresses are specified) 
t'vils~ = P ,  (3.7) 

(vi are the cosines of the outward normal vector to the boundary S; and u ,  and P ,  are vector functions 
specified on S). 

Equations (3.1) and (3.5) and boundary conditions (3.6) and (3.7) define the boundary-value problem 
of the linear theory of elasticity. 

4. E x p a n s i o n  of  F u n c t i o n s  in T e r m s  of L e g e n d r e ' s  P o l y n o m i a l s .  We select the coordinate 
system ~k of the layer as a curvilinear coordinate system. In this case, the coordinate ~3 E [-1,  1] and the 
unknown functions u and ~i are represented as series in terms of Legendre's polynomials: 

OO OO 

u =  [ulkek, s   [iilkpk. (4.1) 
k=0  k=0  

Here Pt  (~3) are the orthogonal Legendre's polynomials; and [u] k and [~i]k are the expansion coefficients that 
depend on the Gaussian coordinates { ~ }  E S~ C R2: 

1 1 

- 1  - 1  

Let us expand the quantities ~i in terms of the main local basis ai. According to (2.4) and (3.1), we 
have 

from which, using the rule of index lowering, we obtain 

i, i = g'-dmh (ai"m aa + a n/h). (4.2) 

Substituting (4.2) into formulas (4.1) for the expansion of ~i in terms of Legendre's polynomials, after simple 
transformations, we have 

I + 2 k  (~) (k). {i 
= x/-dh ~ - -  ( i  '~ av+  Q' n) PI,, (4.3) 

2 k=0  

where 
(k) 1 (k) 1 

-1 -1 
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-(k) (k) 
M ~# are the moments of the tangential stresses of the kth order; and Qa are the moments  of the transverse 
(shearing) forces of the kth order. 

As with the forces, let us expand the displacement vector u in (4.1) in the main basis: 
r (k) 

u =  ~ ( U ' r a v +  (~n )  Pk. (4.4) 
k=0 

Here 

(D l + 2 k  1 (k) l + 2 k  I 
U'r= - -  f (u . a'f) P#5 a, w =  ~ f (u . n) P#~ a 2 2 

--1 -1  

are the moments of the tangential and transverse displacements of the kth order. 
(0) (0) (1) 

It has been shown [3] that  the first terms M a'r, Q~, and M a'r in the expansion of the stresses in 
terms of Legendre's polynomials (4.3) have the meaning of the forces and moments  acting on an element of 

(0) (1) (0) 
the layer, and that  an arbitrary rigid displacement of the layer appears in the first terms U a, U ~, and W 
of the series of displacements (4.4). This imposes a natural restriction on the min imum number of terms in 
the truncated approximating series (4.1). Thus, if the moment  state is taken into account, the number of 
terms in the truncated approximating series (4.1) for displacements cannot be less than two for tangential 
displacements and not less than unity for transverse ones. 

Approximations of the quantities ~i and u consist in truncating series (4.1) and in reducing the initial 
differential problem to the solution of a finite system of equations in two independent variables. 

5. A p p r o x i m a t i o n  of  S t resses .  Let us consider the equations of equilibrium of a continuum in a 
form equivalent to (3.1): 

n • + 0 = 0, n .  (ii  + t )  = 0, (5.1) 

where, as above, n is a unit  vector along the ~3 axis. The vector n does not depend on the variable ~3. 
Therefore, expanding Eqs. (5.1) into Legendre's polynomial series, we obtain the system 

^a k ^a k n • ([t 1,, + [{;,aa]k + [f] ~) = 0 (k = 0, M), n .  ([t ],a + [t~31 k + [•]k) = 0 (k = 0, g ) ,  (5.2) 

where M and N are arbitrary numbers. For each k we multiply Eqs. (5.2) by Pk and sum the results. As a 
result, we have 

N 
^,~ M 331 ^,,. 33]kpk+n " = n x T , a + n x ~ [ t  k P k + n x F = 0 ,  n - T , a + n . ~ " ~ [ t ;  F 0. 

k=0 k=0 
^ l o t  ^ I l o t  

Here the quantities T , T , and F stand for the truncated series: 

= ~ [ ~ " l k P k ,  = y ~ t ~ l k P k ,  # = n •  y : ~ i t l k •  + n .  [ t l k - n P k .  (5.3) 
k=0 k=0 k=0 = 

Let us consider the function a (~), the truncated series A (~) = ~ [a]kPk (~) corresponding to it, and the 
k=0 

Q-1 
series for the derivative A,~ = ~ [a,~]kP~,. One can show that  for L ~< (Q - 1) the following equality holds: 

k=0 
L 

A,*~ = ~F_,ia,elkPk. (5.4) 
k=O 

Here 

Q (L) 
A*(~ )=  ~'-~[a] k Pk ((); 

k=0 
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(L) 
and Pk are Legendre's polynomials of the form 

(L) f P~' k = 0 , ( L -  1), 

Pk= i PL, k = L + 2 i ,  
PL+I, k = L + 2i + l, 

i = 0 ,  1, . . .  

In this case, we obtain A* (+1) = A (4-1) at the ends of the truncated series [-1,1]. For an arbitrary function 
b (~) one can show the validity of the equation 

1 1 1 

Here 

(QL) 
the polynomials Pk 

--I --I --I 

(5.5) 

Q+I (QL) 
B* (~) = ~ [b] k Pj, (~); (5.6) 

k=O 

for even values of (Q - L) are 

(QL) f Pk, k = O, L, 

P k =  i PQ+I, k = L + 2 i + l ,  

PQ, k = L + 2 i  + 2 ,  

i = O, (Q - L) /2 ,  

i = O,(Q - L ) / 2 -  1, 

and for odd values are 

(QL) f Pk, k = O, L, 
Pk = i PQ' k = L + 2 i + l ,  

PO+l, k = L + 2 i + 2 ,  
i = 0, (Q - L - 1)/2. 

For the truncated series B (~) = 
k=0 

(5.4) we find that  for the truncated series 

N* 
' r a = n •  ( ~ * { [ t 3 ] k P k } •  n )  + n - ( y ~ { [ t ; 3 ] k P k } "  n )  

k=0 k=0 

with arbitrary M* and N* satisfying the conditions M* > / M  + 1 and N* > /N  + 1, the equalities 

N 
n x  kPk = n x T,3, n .  Pk = n - T , 3 ,  

k=0 k=0 

are valid, where 

Q+I 
[b]kPk (~) and B*, it follows from (5.6) that  B* (+ l )  = B(:s Using 

(5.7) 

| (z t ) (y0 t = n x  ~3]k P k } x n  + n .  ~3]k . n  . (5.8) 
k=0 = 

Substituting (5.7) into (5.2), we find 
^ t i  ^ ui 

n x T ,  i + n x F = O, n . T., i + n . ~" = O. (5.9) 

Here, for brevity, we introduce the notation ~13 = ~?,3 = ~?,. 
Thus, in Eqs. (5.9) we have two types of approximations ~?,a and ~.,a for the same values of ta,  which 

differ only in the number of terms retained in the series. 
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stresses: 

M l + 2 k ( ( ' )  ( ' ) ) , . ~ , , a  N l + 2 k ( ( ' )  ( D )  = Q , ,  = Q ~  r  v / S h E  2 Ma'raT+ n Pk, vCah~-':~ 2 Ma~'aT+ n P/~, 
k=o ~=o (5.10) 

~,3 v ~ h ( ~ 0  1 + 2k (k) N" ) = M 37aTP k + ~ I + 2k (k) . 
2 

= k=0 2 Q 3nPk ' M * / > M + I ,  N * / > N + I .  

6. A p p r o x i m a t i o n s  of  De fo rma t ions  and  Disp lacements .  Let us consider an arbitrary 
displacement vector u that satisfies conditions (3.6) at the boundary S~. For simplicity, we consider only 
the case of zero volume forces (F = 0). 

It follows from Eqs. (5.9) that 

f ^ ti ^ tti {('r,i x n ) - ( u  x n) + (T, i �9 n ) (u .  n)} dV~ = 0, dV~ = d~ld~2d~ 3. (6.1) 

Integrating (6.1) by parts, we get 
[(r . r f{['r'i.(nx(uxn))],i+ .n)(u.n)],,}dV~=f{fr" [nx (uxn) ] , i+  . [n.(u.n)l , i IdV ~. (6.2) 

v~ v~ 

Substituting expressions (4.3) into (5.3) and (5.8), we obtain the final form of approximations for the 

Transforming the right-hand side (RS) of (6.2), we obtain 

= f{~., i .  [n x (u x n)],i + ,~,i. [n- (u .  n)],i} dV~ RS 
v~ 

[ r . . r = {"s i n x (u x n)],,~ + �9 [n (u n)],,~ + �9 u,3} dV~ 
, 1  v~ 

N xo)] [o : J { t , ' - [ n  x [u]kP/~ + t ' "  ( ,=o + ~3.LI:~) dV~=f{~,~. U: a + ~3. U:~} dV~. (6.3) 
v~ 

M N 
V' = ~ ( n  • ([u] k x n)) Pk + ~ ( n .  ([u] k- n)) Pk; 

k=0 k=0 

M*+I (M'M) N*+I (N'N) 

Here 

u" = ~ (n x (In] k • n)) Pk + ~ (n. ( [@.  n)) Pk 
k=0 k=0 

The expressions for U" are derived using relations (5.5) and (5.6). Substituting relations (3.1) for {;i into (6.3) 
and using the symmetry of the stress tensor, we perform the transformation 

R S  , u",dv  u',o , ,  . . . . .  U,3} dV U,~ + " ,3I 

(6.4) 

v~ v 

+ 3 a .  U~,/~] + cr3a[3a �9 U~,~ + 33" U',a] + cr33133 �9 U~,~]} dV (dV = Jd~ld~2d~3) .  =/{~"~o,5  be- 
t 

U',~ 
v 

Denoting the expressions 

2E~/3 = 

and, finally, we have 

in square brackets by Eij, we obtain 
! ! 

3/3- U',,, + 34. U,/~, 2E3a = 34. U',~ + 33. U,~, E33 = 33. U',~3; 

RS = / ~riJ EijdV. (6.5) 
v 
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Comparing (6.4) with the expressions for strains in terms of displacements (3.3), we assume that the quantities 
Eij are approximations of the strains eij as truncated series in terms of Legendre's polynomials and that the 
vectors U'  and U" are two approximations of the displacement vector u; one corresponds to the derivatives 
with respect to the coordinates ~a, and the other, to the derivative with respect to the coordinate ~3. 

7. A p p r o x i m a t i o n  of  t h e  B o u n d a r y  Condi t ions .  Integrating the left-hand side (LS) of (6.2), we 
obtain 

/ f LS = {,.~n . (n x (u x n)) + �9 n ) (u -  n)} d~2d~ 3 + {~7,2 . (n x (u x n)) 

E E 

(~H2. d~id~3 [ ~73 . ud~ld~2 _ ~?3. + n) (u  �9 n)} + j / ud~ld~ 2. (7.1) 

s+ s- 

We estimate the sum of the first two integrals in (7.1). For this purpose, using the orthogonality of Legendre's 

polynomials, we substitute the corresponding truncated series U'  for the vector u. Next, since E is a ruled 
surface, the following equalities hold: 

d~ld~ 3 = (v~ O) dcr O, d~2d~ 3 = (vO/g O) da O. 

Here v ~ are the cosines of the outward normal t, ~ to the side surface E at points of the boundary L; j0  = 
30. (3 ~ x 3~ da ~ = IdL x 331d~3; and dL is an increment of the unit vector tangent to the curve L for motion 
counterclockwise along the boundary. As a result, for the sum of the first two integrals from (7.1) we obtain 

T ~  V' (T,~ (T,,~ f ~ vOda 0 (,~a = n x x n) + n. �9 n)). 

E 

In the last two integrals from (7.1), which are related to the faces S + and S - ,  we replace the product 
d~id~ 2 according to the formula 

where v3 = v �9 33; t, is the outward normal to the surface S; the plus and minus signs correspond to the 
surfaces S + and S - .  

After the above transformations we reduce equality (7.1) to the form 

+ v3dS + / ~ v3dS- (7.2) j-o 
E S+ s -  

An approximation of boundary conditions (3.6) and (3.7) by the following truncated series naturally follows 
from the first integral in (7.2): 

U'Iz ~ = u',; (7.3) 
^oe 0 T-/"a 

j0 z~ = P'* (E,  U Ea = E). (7.4) 

Here 

Next, we consider 
displacements Uls+ = u,  

M N 
u', = ~ ( n  x ([u,] k • n))Pk + ~ ( n -  ([u,]k �9 n)) Pk; 

k=0 k=0 
M N 

P'. = ~ ( n  x ([p.lk x n))Pk + ~--~ (n .  ( [ P , l  k �9 n)) Pk. 
k=0 k=0 

the faces S + and S- .  Following boundary conditions (3.6) and (3.7), the 
and Uls ~ = u, are specified on a part of the boundaries S + and $2, while the 
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stresses 

t3v3 = P , ,  tav3] = P ,  (7.5) 
s + I s ;  

are specified on S + and S~'. In the last two integrals on the right-hand side of (7.2), the quantity '~av3/J 
represents surface forces. Therefore, it is natural to replace (7.5) by the following boundary conditions at S + 
and S~': 

^ 3  ^ 3  

T ,3 = p , ,  = P , .  (7.6) 
J s  + J s2 

Since the vector u is arbitrarily selected, we specify the boundary conditions 

U" U"[ = u .  (7.7) 
IS + = v , ,  IS~" 

on the faces S~ + and S ; .  Finally, using (7.3), (7.4), (7.6), and (7.7), Eq. (7.2) is written as 

+ , |  u. 
---5--.,dS +] - - -V - - .~S - .  (7.8) 

r.~ r ,, s +  s ;  s + s ~  

Correlating the left- and right-hand sides of Eq. (6.2), which are derived from (6.5) and (7.8), we obtain 

~:~. u', 
= 1 . , .  § / .o oo+ / p. . . , , , .  

V ~a ~u S + 

~,3 ,~,3 " U ,  
�9 U, 

s; s+ s; 
Relation (7.9) is the condition of equality (balance) of the work of the external and internal forces. 

8. H o o k e ' s  Law A p p r o x i m a t i o n .  We approximate Hooke's law (3.4) by the relations 

a i1 = CiJkSEks, (8.1) 

where Eks are approximations of the strain tensor e/,s (6.4): 

2 E . ~  = ~Z. U',.  + 3 . .  U',~, 2E3.  = ~ . -  U',~ + ~3- U',., Eaa = ~3- U',~. 

We present (8.1) in vector form similar to Eqs. (3.5) ~i = ja i j~y  = j ( ~ i a  . U,,a + ~ i3 .  U",aj. ~ Thus, for the 
coefficients of series (5.3) and (5.5), we obtain 

1 

= 2 J �9 U,a + �9 U','3) Pkd~ 3 . (8.2) 
- 1  

9. S y s t e m  of E q u a t i o n s  for ( M ,  N ) - A p p r o x i m a t i o n .  Using the above results, we write a system 
of two-dimensional equations. The lengths of the corresponding truncated series are specified by two pairs of 
numbers ( M , N )  and (M*,N*) .  As follows from (5.10), the inequalities 

M* ~ > M + I ,  N * ~ > N + I  (9.1) 

should hold. It is natural, reasoning from constraint (9.1), to select minimum possible values of (M*,N*).  
In this case, however, specification of arbitrary conditions at the faces can affect the differential order of the 
equations. This is due to the symmetry condition for the stress tensor (3.2) 3i x ~i = 0, which can be written 
in the equivalent form 3a x ~a = - h n  x ~3. Performing vector and scalar multiplication of the last equality 
by n, after transformations we obtain 

:~e"  (n X {a) = 0, n X (:~a X ~a) = hn X (~3 X n). (9.2) 
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Let us consider the second equality of (9.2), since it is precisely this equality that  contains the quantity t) ,  
which is responsible for assignment of stresses on the face surfaces [condition (7.6)]. For simplicity, we limit 
our study to plates of constant thickness, since in the more general case all arguments are similar. For plates 
of constant thickness we have 

o o O. (9.3) ~a = ~ ,  n -  3~ = 

From (9.2) and (9.3), it follows that  3 o.  (n .  ta)  = hn x (~;3 x n), and for the coefficients of the series in terms 
of Legendre's polynomials, respectively, 

o (n  [[,~]k) hn  x ([~3]k x n) .  (9.4) 

The first derivatives of the quantities (n-[~a]s,) enter into the equilibrium equations (5.2), and the parameter k 
takes values of from 0 to N. On the other hand, the products n x ([~)]k x n) enter into the series for T 3, and 
the parameter k takes values of from 0 to M*. This series gives boundary conditions for stresses (7.6) at the 
faces. Consequently, it follows from (9.4) that  for the differential order of the equations to be independent of 
assignment of the boundary conditions in stresses at the faces, the inequality 

M*/> N + 2. (9.5) 

should hold. Combining (9.1) and (9.5), we write a system of inequalities: 

M * > ~ M + I ,  N * > ~ N + I ,  M* > ~ N + 2 .  (9.6) 

Selecting the smallest values of the parameters M* and N* that  satisfy inequalities (9.6), we have two possible 
variants: 

M* = M + I ,  N* = N + I ,  if M > ~ N + I ,  

M* = N + 2 ,  N* = N + I ,  if M < . N + I .  

For M = N + 1, we obtain a one-parameter family of N-approximations of the equations of an elastic layer 
of arbitrary thickness [3]. Thus, the lengths of all truncated series that  enter into the equations are defined 
by assignment of two numbers M and N. The two-dimensional system of equations in (M,N)-approximation 
consist3 of: 
the equilibrium equations [see (5.9)] 

^,i n ) + n  ,--,i = n x (T,i x . (,~,,i. n) 0; (9.7) 

the equations of Hooke's law (8.2) in the form of series (5.3) and (5.8): 

M l + 2 k  t ' l  
- -  / ' 0 "3 T'"  = ~ Pk 2 J J (C "~. U,~ + �9 U',~) Pkd~ 3, 

k = 0  --1 

g l + 2 k  rl 
[ ' 0~ ,, "r"" = ~ Pk 2 a J ( C ~ -  U,~ + �9 U,3 ) Pkd( 3, 

k=0 -1 (9.8) 

~,3 = ,~,3 = ,~. = n x g (C 3~ ' 0 33 k=o 2 .U,~ + �9 U~,~) x nPkd~ 3 
- 1  

( x  ~ , + n -  2 .U,~ + �9 U~,'3) �9 nPkd~ 3 ," 

the conditions at the faces S + and S -  [see (7.6) and (7.7)] 
^ 

s + W v3[ = P . .  (9.9) 
U" T'v3 ^ * 

U"Is+ = u, ,  Is~- = u, ,  d = P*'  J s ;  
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In determining the differential order of system (9.7)-(9.9) our reasoning is similar to [3] and is as follows. 
The strain-displacement relations (6.4) contain the coefficients of the series U I with their first-order partial 
derivatives with respect to the Gaussian coordinates ~a on the middle surface S ~ while the coefficients of the 
series (U" - U I) occur without derivatives. The first and the second group of unknown coefficients are called 
basic and complementary, respectively. The complementary unknowns are found from Eqs. (9.9), which are the 
boundary conditions at the faces. These equations form a system of algebraic equations in the complementary 
unknowns. Solution of this system gives expressions for the complementary unknowns in terms of the basic 
unknowns. 

Furthermore, if we insert these expressions into (9.8), we obtain formulas that  relate the vector functions 
~la, ~:,~,, and "r* and the basic unknowns which are the coefficients of the series U ~. These formulas are linear 
forms with respect to the coefficients of the series U ~ and their first derivatives. 

By inserting the expressions for T 'a ,  ~,,a, and "r* into the equilibrium equations (9.7), we obtain a 
system of 2 (M + 1) + N + 1 scalar equations, each containing 2 (M + 1) + N + 1 scalar functions (n x ([u] k • n) 
(k = 0, M),  [u] k. n (k = 0- '~)) together with their partial derivatives up to the second order inclusively. Thus, 
we have a 2nth-order system to determine n functions, where 

n = 2 ( M  + 1) + N +  1. (9.10) 

The differential order of the system for (M,N) approximation does not depend on the type of boundary 
conditions at the faces: either stresses or displacements can be specified. 

For M = 1 and N = 0, we obtain the first approximation. In this case, it follows from (9.10) that 
n = 5, i.e., we have five basic unknowns: three displacements of the middle surface and two rotation angles. 
The.corresponding differential order of system (9.7)-(9.10) is 10. 
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